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Attention deficit hyperactivity disorder (ADHD) is now among the
most commonly diagnosed chronic psychological dysfunctions of
childhood. By varying estimates, it has increased by 30% in the
past 20 years. Environmental factors that might explain this
increase have been explored. One such factor may be audiovisual
media exposure during early childhood. Observational studies in
humans have linked exposure to fast-paced television in the first
3 years of life with subsequent attentional deficits in later child-
hood. Although longitudinal and well controlled, the observa-
tional nature of these studies precludes definitive conclusions
regarding a causal relationship. As experimental studies in humans
are neither ethical nor practical, mouse models of excessive
sensory stimulation (ESS) during childhood, akin to the enrichment
studies that have previously shown benefits of stimulation in
rodents, have been developed. Experimental studies using this
model have corroborated that ESS leads to cognitive and behav-
ioral deficits, some of which may be potentially detrimental. Given
the ubiquity of media during childhood, these findings in human-
sand rodents perhaps have important implications for public
health.
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The prevalence of attention deficit hyperactivity disorder
(ADHD) has increased substantially over the past 20 y, by as

much as 30% by some estimates (1). ADHD is a clinical diag-
nosis recognizable to many. However, some argue that atten-
tional capacity should be treated as a continuous rather than a
dichotomous outcome given compelling evidence that there is a
monotonically increasing relationship between a child’s ability to
stay focused and improved adult health outcomes (2, 3). Akin to
the rise in autism, the reasons for the rising prevalence of ADHD
are likely multifactorial including an increase in the incidence as
well as increased recognition. Decades of research have established
a genetic predisposition to ADHD, but estimates of the herita-
bility of ADHD range from 0.5 to 0.8 (4–8). The 1999 Surgeon
General’s report on child mental health stated, “for most chil-
dren with ADHD, the overall effects of these gene abnormalities
appear small, suggesting that non-genetic factors also are im-
portant.” (4, 9–13) These “non-genetic factors” must account for
the increased incidence as our genes have not changed appre-
ciably in millennia. The role that environment might play in
ADHD has been tested provisionally with respect to maternal
smoking, maternal stress during pregnancy, maternal obesity,
chaotic families, and inconsistent or harsh parenting (14–26).
Another potential emerging environmental factor may be early
exposure to electronic media.
Children today are immersed in electronic technology begin-

ning shortly after birth. The typical child today begins regularly
watching television at 4 mo of age compared with 4 y of age in
1970 (27, 28). Most of this shift has occurred in the past 15 y with
the advent of new programs geared toward young infants (29).

Moreover, although no data are available for the long-term im-
pact of smart phone, tablet, and computer usage on young in-
fants, there is an emerging literature that indicates that these
new forms of media usage can be linked to ADHD and other
psychiatric disorders in older children and college students (30,
31). The perhaps excessive exposure to media starting with very
young infants has led some to refer to this generation as “digital
natives” who are being raised by “digital immigrants.” The pos-
itive and negative implications of growing up as a digital native in
a society in which media use begins early and is ubiquitous re-
main largely unknown. The success of human evolution is in part
explained by the tremendous plasticity of the human brain, which
allows it to be shaped through interactions with its environment.
This plasticity, however, also means that early experiences exert
considerable influence on neuronal structure, function, and
ultimately cognition.
The present review paper will discuss the general processes

that govern neurodevelopment, provide a theoretical framework
as to what the potential risks of overstimulating the developing
brain might be, review our observational findings in humans
related to exposure to early fast-paced media and subsequent
attentional deficits, and summarize experimental animal data
that corroborate our prior hypotheses. It should be noted that,
although we refer to media, most of the prevailing research in
young infants is based on television rather than newer platforms
(e.g., touchscreens). Although recent studies have demonstrated
considerable use of touchscreens in infants and toddlers, data
regarding untoward effects are minimal to date. However, the
proposed paradigm is one of overstimulation, which could also
be operative on touchscreens depending on the content
being viewed.

Neurodevelopment—An Interactive Process Driven by the
Environment
During neurodevelopment, billions of neurons become wired into
a multitude of interconnected neuronal networks, microcircuits,
layers, columns, and functional areas (32–36). Most neurons
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form hundreds of local and long-range connections and in turn
process barrages of synaptic and neuromodulatory inputs at any
given time. Neuronal processing occurs throughout the CNS, but
important connections are also formed with the various divisions
of the autonomic nervous system (37–40), the peripheral sensory
system, and the somatic motor systems (41–43). This neuronal
organization generates and processes spatiotemporal patterns
and information that determines who we are, how we behave,
and how we cope with our environment.
Consisting of billions of connected neurons, the human brain

is set up by 19,000–20,000 protein-coding genes (44). Notably,
a strikingly similar number of genes have been discovered in
Caenorhabditis elegans (45), a small worm that possesses only
302 neurons, all of which have been individually identified
(46). Moreover, the majority of disease-related genes in hu-
mans have homologs in C. elegans (47). This is to say that
humans carry more or less the same number of genes that
evolved to wire a brain of barely 300 nerve cells that control the
entire behavioral repertoire of a small worm. Therefore, in-
stead of being dictated by a relatively small number of genes,
neurodevelopment is a highly interactive process in which
genes provide general developmental signals—a very rough

framework—and neuronal and modulatory interactions de-
termine the wiring of the billions of cells that form the human
brain: a nervous system capable of generating consciousness,
emotions, memories, communication, and a complex and
sophisticated behavioral repertoire.
This dynamic process depends not only on tremendous

neuroplasticity but also on homeostatic mechanisms that are
critical to achieve a balanced outcome (48–51). The infant
brain is very responsive to environmental changes. Many fac-
tors, such as early-life adverse events, pubertal and maternal
stress (52–54), toxins (55–57), nutrition (58–60), geographic
environment (61, 62), and epigenetic factors (63, 64), can have
adverse consequences on neurodevelopment. Indeed, there is
increasing evidence that most neurological and psychiatric
disorders have a developmental origin that is the result of
prenatal and early postnatal disturbances in this complex
process (65–69).
The fully developed and functional human brain takes more

than 20 y to develop, and different areas have different de-
velopmental profiles (70–72), but the first few years of life are
widely acknowledged to be the most crucial (73). The human
brain triples in size in the first 3 y of life, a slope that is uniquely

Fig. 1. Schematic illustrating the hypothesized relationship between human brain development and exposure to ESS. Typical cortical development involves
proliferation, migration, arborization, and myelination. Proliferation and migration predominantly occur during prenatal stages, and arborization (circuit
formation) and myelination continue through the first two postnatal decades. Synaptic pruning predominantly occurs in the early part of development but
continues for years into adulthood. The brain grows drastically in size and complexity, which can be influenced by genetic and environmental factors. During
these developmental stages, psychological disorders are developed. Media usage increases dramatically. The blue shaded area indicates a representative time
frame in which these occurrences happen during mouse development, and when we used the ESS. Human and rodent (e.g., mouse and rat) developmental
stages and corresponding time windows (years for humans and months for rodents) are represented in the x axis of the graph. Typical brain growth in weight
is displayed for human (blue brain development line) and mice (red brain development line) in the y axis.
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steep over the life span (Fig. 1). This initial phase of neuro-
development is characterized by a proliferation phase that is
associated with an increase in the number of neurons, spino-
genesis, and dendritic and axonal growth (72, 74, 75). This initial
phase leads to an overproduction of connections, and it is esti-
mated that an infant has three times as many synapses as ado-
lescents and adults (76). What follows is a “pruning” phase
during which connectivity specializes: Connections that are
functionally important are strengthened, while those that are not
used are weakened (72). Various cellular mechanisms change in
this biphasic manner. For example, the number of spines follows
an inverted U-shaped trajectory, with a peak in spine density at
the age of ∼3.5 mo. However, it is important to emphasize that
all of these changes have different trajectories in different brain
regions. These ultrastructural changes are complemented by
dramatic changes in functional connectivity conditioned on their
location (74, 77, 78). Insights into these changes have been
gained through resting-state functional connectivity MRI
(rs-fcMRI) studies. These studies investigate how fluctuations in
the blood oxygen level-dependent signal of different regions of
the brain are correlated with one another at rest, forming a
number of specialized functional networks (e.g., the default
mode network). Functional networks are differentially shaped in
a region- and species-specific manner, involving the migration of
neurons, myelination of axons, the formation of synapses, and
the continuous synaptic pruning that occurs throughout the first
20 y of life (79, 80). The first structures to be functionally con-
nected are primary sensorimotor and visual networks, while
frontoparietal, executive control networks are still premature
and form later during development (66). Early life functional
network patterns are fundamentally distinct from adult networks
and are reorganized throughout development (81–83). De-
velopmental brain maturation trajectories are prominent enough
to predict the age of an individual using patterns in rs-
fcMRI (84).
Of note, the trajectory of this brain development is profoundly

influenced by experiences. Perhaps the most cited influence is
the type of environment. Animals reared in a complex and in-
teractive environment (the so-called “enriched environment”)

show numerous changes in neurodevelopment compared with
animals reared in an impoverished one devoid of social and
environmental stimuli. The brain size, cortical thickness, com-
plexity in dendritic branching, and spine density of animals ex-
posed to an enriched environment are highly increased, as are
the cognitive abilities (85–90). Furthermore, light tactile stimu-
lation for the first 10–15 d of postnatal neurodevelopment results
in significant changes in nervous system and behavior that are
beneficial (91, 92). These changes are permanent, which is
consistent with experiments performed by Mychasiuk et al. (93),
indicating that enriched environment leads to a significant de-
crease in gene methylation in the frontal cortex and hippocam-
pus, suggesting that early experiences result in epigenetic changes.
While the salubrious effects of stimulation on brain develop-

ment and cognition are well established, what has not been ad-
equately studied is to what extent the developing brain can be
overstimulated. Is there good stimulation and bad stimulation?
Can too much sensory stimulation during this complex process of
neurodevelopment result in detrimental consequences?

Studying the Effects of Media Overuse
The pacing of shows designed for infants is extremely rapid
compared with reality and even to shows designed for older
children and adults (94). These formal features may be what
keep infants engaged in the screen (27). Conceptually, this raises
the concern that this excessive auditory and visual stimulation
might condition the developing brain to expect an intensity of
inputs that reality cannot provide, thus leading to inattention in
later life. Put another way, is it possible that the highly in-
teractive process of wiring the brain will adjust the sensory cor-
tices to the fast-paced bombardment associated with some
media? Moreover, will sensory overstimulation also affect other
brain areas that are not directly affected by fast sensory stimu-
lation? The “overstimulation hypothesis” was first tested in small
experimental studies in the 1970s (95–97). The results were
mixed with some finding the pacing of programs was associated
with short-term deficits in attention while others did not. A more
recent experimental study did find that a rapidly paced show
(compared with a slowly paced one) diminished executive

Standard Housing Behavioral TestsExcessive Sensory 
StimulationStandard Housing

42 Days 10 Days10 Days10 Days

Fig. 2. An illustration of the mouse excessive sensory stimulation (ESS) chamber and the experimental procedure.
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function at least briefly after viewing (98). There is increasing
evidence that, in its extreme, excessive media usage can also lead
to behavioral addiction, This seems to be particularly the case for
internet gaming. Studies examining the neuronal consequences
of internet gaming disorder reported numerous significant changes
(99, 100), including alterations in resting-state EEG coherence
(101), significant alterations in cortical thickness (102, 103), al-
tered functional connectivity in the default mode network (104,
105), and significant associations with ADHD and other psy-
chiatric disorders (106, 107). As they now stand, these findings
are correlational and cannot establish causation. Nevertheless,
exploring the consequences of excessive internet use and internet
gaming has become a rapidly emerging field of research, with
immense clinical and public health implications. However, all of
these studies focus on preschoolers, school age children, and
college students and therefore did not test the effects of viewing
during the most critical window of brain development.
In a large observational study, we found that increased tele-

vision viewing before the age of 3 was associated with increased
risk of attentional problems at school age (21). Moreover, in a
follow-up study, we found that the pacing of shows drove these
effects with faster pacing having stronger associations with sub-
sequent attentional problems (108). These findings may have
important public health implications given that attentional ca-
pacity in early childhood is associated with improved outcomes
in adulthood in several domains including the following: higher
socioeconomic status, lower rates of substance use and in-
carceration, and lower divorce rates (2). Based on the existing
literature, the American Academy of Pediatrics discourages
television viewing before 2 y of age (109).

Developing an Animal Model for Excessive Rapidly Paced
Media
All studies of infant television viewing and subsequent deficits in
attention have been observational for logistical and ethical rea-
sons, and although they controlled for many potential con-
founding factors, the possibility of residual confounding remains.
Indeed, when trying to understand what aspects of electronic
media use are detrimental and what aspects are beneficial, ob-
servational studies are inadequate to gain mechanistic insights
into the potential contribution of these nongenetic factors to
ADHD. Media use is an exceedingly complex stimulus. Dis-
secting its various components will be essential to understand-
ing which aspects of it may be detrimental. One salient aspect
of media is that it can deploy surreal pacing, producing scene
changes that are unachievable in the “real” world, which raises
important questions that need to be addressed mechanisti-
cally. Can the sheer sensory, nonnormative bombardment (i.e.,

sensory overstimulation) be sufficient to cause increased impul-
sivity, hyperactivity, or cognitive impairment? These questions
can be mechanistically dissected and tested in animal models.
Indeed, it took experimental proof in animal studies to convince
the tobacco industry and politicians that cigarettes are highly

Table 1. Summary of behavioral tests performed on control and ESS mice

Test name Description

Light/dark latency test
(LDL)

Mice are placed in light/dark box. Mouse behavior is tracked using VideoTrack (ViewPoint LS) to assess the time they spent
in the light side of the chamber compared with the dark.

Elevated plus maze
(EPM)

Mice are placed on EPM. Behavior is tracked to determine how much time they spent in the open arms compared with the
closed.

Open-field test Mice are placed in a large square box for 10 min. Behavior is tracked to determine how much time is spent on the inner
edge of the box compared with the center of the chamber. Overall distance traveled in the chamber is also tracked.

Novel object
recognition test

Mice are put in the same test apparatus as the open field. This time two identical objects are put in the chamber as well for
an acquisition trial. After mice get familiarized with these objects, they are taken out for 1 h. One hour later, the mice
were put back in the chamber for the test trial. For the test trial, one of the previous familiar objects remains in the
chamber, but the other one is replaced with a new “novel” object. Time spent on each object is recorded.

Barnes maze Mice are placed on a large elevated circle, which has 19 mock holes and 1 target hole, which leads to an escape hole
underneath the table. Mice are placed in the middle of the circle and time to find the escape hole is measured. This is
done for 4 training days. On the fifth day, the escape hole is blocked and number of pokes into the escape hole are
measured.

Fig. 3. This figure highlights the results of (A) the open-field test (OFT), (B)
elevated plus maze (EPM), and (C) light/dark latency (LDL) tests. A demon-
strates illustrative examples of control (CON) (red) and excessive sensory
stimulation (ESS) (blue) travel paths. These are quantified for each group
indicating the overall distance traveled in the OFT [mean ± SEM; CON,
58.37 ± 1.94, n = 72; ESS, 66.12 ± 2.01; n = 72; t(142) = 2.62, P < 0.01]. B shows
an illustrative example of the paths during the EPM for CON and ESS. Time
spent in open arms is depicted in the bar graph [mean ± SEM; CON, 9.93 ±
2.11, n = 48; ESS, 31.03 ± 2.78; n = 61, t(105) = 3.39, P < 0.001]. C depicts the
examples of CON and ESS path lengths during the LDL, and time in the light
chamber is quantified in the bar graph [mean ± SEM; CON, 53.79 ± 4.17, n =
48; ESS, 82.39 ± 6.41, n = 61; t(105) = 2.62, P < 0.01]. Error bars in graphs
represent the SEM of variability within each group. Note: **P < 0.01; ***P <
0.001. Adapted with permission from ref. 119.
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addictive and cause lung cancer. At this point, we can only
speculate that media use affects behavior, and any association
with ADHD remains on relatively soft ground. Although the
recent studies on internet gaming provide increasing evi-
dence for a link between media use and ADHD as well as other
neurological and psychiatric sequelae, the data are far from
conclusive (110).
Consequently, we have developed a mouse model of what we

have termed excessive sensory stimulation (ESS) to further ad-
vance the field, and dissect one particular aspect of media use. In
humans, it will be impossible to isolate the “mere” sensory
overstimulation aspect from cognitive involvement, and from the
interactive potential of media use. Our model builds on the
seminal studies in rodents that actively explored environmental
influences on brain development and cognition. Rodents reared
under enriched environmental conditions perform better on
maze trials later in life (86, 87, 111). This improvement is asso-
ciated with increased dendritic branching in the occipital and
motor-sensory cortex (89, 111), increased size and complexity of
the superior colliculus (89), and increased neurogenesis in the
hippocampus (90, 112–116). Our research has tested the “op-
posite” hypothesis: that ESS during a similar period will
subsequently diminish performance and adversely affect
neurogenesis. In contrast to the enriched environment, ESS re-
quires no active engagement, increased locomotor activity, or
curiosity; it isolates the sheer bombardment of the senses from
other aspects of media use. We brought a hypothesis based on
observational studies in humans to the laboratory to experi-
mentally validate it in a rodent model. While many studies test
hypotheses in animal models and speculate about human im-
plications, we in effect did the opposite.
To test this condition, experimental mice received an ESS

experience for 6 h per day for 42 d (Fig. 2). Speakers, connected
to a precision amplification device, were mounted above

standard mouse cages, and colored lights were positioned at all
four walls. Audio from the “cartoon channel” was piped into the
mouse cage at 70 dB. This level is typical for television watching
and well below the 100–115 dB that are typically used for
acoustic stress models in rodents (117, 118). A photorhythmic
modulator was used to change colors and intensities in concor-
dance with the audio, thereby simulating television that cannot
be avoided (e.g., flashing lights on all four sides of the cage). We
consider this excessive in the sense that it far exceeds any stim-
ulation that mice would encounter under normative conditions in
a vivarium of natural setting.
Beginning at postnatal day 10 (P10), mice were divided into

two groups: (i) The control group was reared according to ap-
proved and established protocols at the Seattle Children’s Re-
search Institute vivarium. (ii) The experimental group was
treated identically to the control group except that it was ex-
posed to ESS for 6 h every night in the ESS chamber. Exposure
lasted for 42 d, which is comparable to the length commonly used
in enriched environment studies. Mice remained with their
mother until weaning (P21) after which pups were housed in
groups of up to five mice per cage. Following the exposure pe-
riod, lights and speakers were removed, but mice remained in
their familiar, regular mouse cages. Ten days later, mice were
behaviorally tested using the light/dark latency test (LDL), the
elevated plus maze (EPM), the open field test (OFT), the novel
object recognition test (NORT), and the Barnes maze (BM).
Table 1 summarizes the tests that were performed. In all cases,
technicians blinded to research group made assessments.
Interestingly, anxiety, learning, and memory were decreased,

whereas risk-taking and motor activity levels were enhanced in
ESS mice compared with controls (119) (Figs. 3 and 4). Specif-
ically, ESS mice traveled greater distances in the open field,
spent more time in the open on the elevated maze test, and spent
more time in the lighted chamber compared with control mice.

A B

Fig. 4. Results of (A) Barnes maze (BM) test and (B) novel object recognition test (NORT). A shows differences in search strategies on the test day of the BM
for control (CON) (red) and excessive sensory stimulation (ESS) (blue). Learning throughout the 4-d training trials is depicted in terms of the time to find the
target hole for CON and ESS. ESS mice trend toward finding the target hole faster than CON on day 1 (effect of hyperactivity) [mean ± SEM; CON, 30.60 ±
4.64, n = 12; ESS, 20.08 ± 2.35, n = 10; t(16) = 1.80, P < 0.09] but spent significantly more time on day 4 to find the target hole [mean ± SEM; CON, 3.44 ± 0.39,
n = 12; ESS, 6.33 ± 0.67, n = 10; t(15) = 5.24, P < 0.001]. B illustrates the NORT and the results of the discrimination ratio on the test trial. The discrimination
ratio was calculated as follows: (time spent on the novel object – time spent on the familiar object)/total time. ESS mice spent less time with the novel object
compared with CON [mean ± SEM; CON, 0.32 ± 0.07, n = 39; ESS, 0.16 ± 0.05; n = 42; t(70) = 1.99, P < 0.05]. Error bars in graphs represent the SEM of variability
within each group. Significance was determined using a two-tailed t test. Note: *P < 0.05; ***P < 0.001. Adapted with permission from ref. 119.

Christakis et al. PNAS | October 2, 2018 | vol. 115 | no. 40 | 9855

N
EU

RO
SC

IE
N
CE

CO
LL
O
Q
UI
UM

PA
PE

R



These findings can be interpreted as showing that mice are hy-
perkinetic and less risk averse. This is an important finding as it
directly addresses the question raised earlier: Is the sensory
overstimulation alone sufficient to have detrimental conse-
quences resembling those of ADHD? Our data indeed suggest
that, even without cognitive engagement and without social
isolation, sensory overstimulation alone is sufficient to have
detrimental consequences. Aside from numerous behavioral
changes, we found significant neurobiological alterations in
glutamatergic transmission in the nucleus accumbens and
amygdala (120). A different group of investigators in Israel did a
replication and extension study of our work (121). They exposed
juvenile rats to 1 h daily of highly salient odors that were changed
frequently, whereas control rats had consistent odors. They
found that overstimulated rats performed more poorly on the
five-choice serial reaction time task when auditory distractors
were present. The five-choice serial reaction time task tests for
impulsivity and attention and is considered analogous to the
computer performance task used in humans to measure ADHD
symptomology (122, 123). Notably, there findings are consistent
with what is seen clinically in children with ADHD: They per-
form better when distractions are minimized. Importantly, while
it can be argued that our ESS paradigm used types of stimulation
that rodents would never encounter in the real world, Hadas
et al. (124) used a paradigm of odors that in theory could exist in
more naturalistic environments. This suggests that it is the in-
tensity of the stimulation that drives the observed effects.
These results provide experimental corroboration of observa-

tional data in humans. Indeed, this was hypothesis-driven re-
search confirming findings from children in rodents rather than
the reverse as is frequently the case. Indeed, it is important to
note that the arguably most frequently used rodent model for
ADHD, the so called hypertensive rat, was not created in a
hypothesis-driven and/or mechanistic manner; rather the be-
havioral traits seen in this rodent were considered “ADHD-like.”
(125–129) This means that the behavioral phenotype of these
rats could be caused by a myriad of mechanisms that may or may
not be relevant for understanding the etiology of ADHD. Nev-
ertheless, as is the case for all animal models, the differences
(and similarities) between what is observed in human infants and
what is induced in rodents are worth considering in some detail.
First, there is the issue of cognitive engagement. It is unclear

how much cognitive engagement infants have while watching
television (130), but it is highly probable that mice have little to
none when experiencing ESS. Thus, our findings cannot speak to
the role of cognitive engagement itself. Instead, our findings
support a much less intuitive but more important hypothesis: that
the formal features of the medium are what present a risk,
thereby making even potentially educational programming

detrimental, not because of the content but because it over-
stimulates too many senses for too long too early in develop-
ment. In other words, ESS, in and of itself and independent of
any cognitive content, suffices to have significant behavioral and
neurobiological consequences. This phenomenon has been ob-
served in humans where even programs that have demonstrable
educational benefits in preschoolers (e.g., Sesame Street) have
been shown to result in decreased language when viewed by
infants (131).
Second, some might argue that the control condition does not

represent “normal” mouse developmental exposures since lab-
oratory conditions are clearly different from what would be en-
countered in natural habitats. We propose two counterfactuals to
this. The work on enriched environments that has been so highly
impactful also used a similar control group (88, 115). In addition,
laboratory-reared mice are not offered unlimited terrain to cover
or predatory threats to avoid. Seen in this light, our findings are
notable in that overstimulated mice have outcomes that are
consistently worse than those reared in what might be deemed an
understimulating one. In other words, relative sensory depriva-
tion is better than sensory overload. Future experiments should
build on these findings and directly compare ESS with EE mice.
Last, it might be argued that our findings are confounded by

stress. While it should be noted that the observations in humans
might also be induced by stress as isolating infants and bom-
barding their audio and visual senses may well be stressful, we do
not believe that is operative in our model for several reasons. We
have opted to keep the pups with their mother before weaning to
minimize stress related to separation. In addition, the audio
levels we use (70 dB) are well below acoustic stress levels (100–
115 dB) for mice (132). Furthermore, our finding of increased
risk taking (decreased anxiety) runs contrary to what has been
found in stress models where increased anxiety has been re-
peatedly demonstrated (133–137). Moreover, stress alters ap-
petite and weight gain, and there were no differences in body
weights between mice exposed to the ESS paradigm and con-
trols; finally, we have measured cortisol levels in experimental
and control animals and found no significant differences (120).
In summary, our observations in humans have been at least

provisionally confirmed in experimental studies in mice. ESS
early in life can negatively impact cognitive function and be-
havior. These findings support the American Academy of Pedi-
atrics recommendation that screen time—particularly when it
involves fast-paced media—should be minimized for children
under 2 (138). However, it should be noted that the age of 2 y is
arbitrary, and given evidence that brain development continues
until the early 20s, further research should be conducted
to better clarify potential impacts throughout the pediatric
life span.
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